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ABSTRACT
Understanding and deriving neural and synap-
tic plasticity rules that can enable hidden weights
to learn is an ongoing quest in neuroscience
and neuromorphic engineering. From a machine
learning perspective, locality and differentiabil-
ity are key issues of the spiking neuron model op-
erations. While the latter problem is now being
tackled with surrogate gradient approaches, how
to achieve this in deep networks in a scalable and
local fashion is still an open question. Here, we
demonstrate that deep learning algorithms that
locally approximate the gradient backpropaga-
tion updates using locally synthesized gradients
overcome this challenge. Our approach, called
Deep Continuous Local Learning (DCLL), re-
sults in highly efficient spiking neural networks
and synaptic plasticity capable of training deep
neural networks.
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DEEP CONTINUOUS LOCAL LEARNING (DCLL)
In three factor rules, both pre-synaptic and post-
synaptic terms are local, meaning that all the vari-
ables to compute them are available and the neu-
ron and synapse. The third factor – the error – gen-
erally involves non-local terms, including the ac-
tivity of other neurons and the targets, and their
history. Feedback alignment [3] has shown that
approximations to the back-propagated errors are
possible, but how to maintain their history effi-
ciently remains a challenging problem. Super-
Spike [4] deals with it by explicitly computing this
history at the synapse and scales quadratically in
the number of state variables.
The DCLL rule combines SuperSpike with deep
local learning to solve the temporal and spatial
credit assignment problem in continuous spiking
neural networks. To achieve this, we organize
neurons per layers and train each layer to pre-
dict a pseudotarget using random local readout,
reminiscent of readout neurons in liquid state ma-
chines. The loss function is the sum of the layer-
wise loss functions defined against the local read-
out predictions. The absence of a temporal convo-
lution term in the readout enables linear scaling.

As in SuperSpike [4], we rely on a determinis-
tic Spike Response Model (SRM) model combined
with a soft threshold function for computing a sur-
rogate gradient:

potential : ui =
∑
j

wij(ε ∗ sj) + η ∗ si,

spike : si = Θ(ui),

surrogate : ai = σ(ui),

with Θ the unit step function and σ the sigmoid
function. The surrogate network can be differenti-
ated with respect to the neuron parameters. This
enables a gradient-based optimization of a target
loss L as a function of ai:
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In the case of Mean Square Error loss for each
layer, the learning rule can be derived as:

∆wij(t) = −η
(
σ′(uni )(ε ∗ sn−1j )

)∑
k

gnkierrork(t).

RESULTS ON POISSON-MNIST

We rely on a simple network architecture consist-
ing of three convolutional layers of 16, 24 and
32 channels respectively with 7 × 7 kernels inter-
leaved with max pooling layers. Each digit is con-
verted into a 500ms spiketrain, yielding 450 gra-
dient steps per minibatch. The final error is 1.23%
for the third layer of spiking DCLL. An identical
conventional convnet achieves 0.91% error.

RESULTS ON DVSGESTURE

Amir et al. recorded the DvsGesture dataset [1]
using a Dynamic Vision Sensor (DVS) [2], consist-
ing of 11 hand and arm gestures. DCLL reaches
a 5.819% error, a performance comparable to the
IBM EEDN case (5.51%). Moreover, DCLL con-
verged after a much smaller number of iterations,
and weight updates were performed online.


